3’__. g: 3 E E Cryptography and Security

CCCURITY ARb CRYETOCRARRY LasoRATORY http://lasec.epfl.ch/

Homework 2 — Signatures & Symmetric Cryptography

Cryptography and Security 202/

o You are free to use any programming language you want, although Python/SAGE is
recommended.

o Put all your answers and only your answers in the provided [id]-answers.txt file
where [id] is the student ID.! This means you need to provide us with all Q-values
specified in the questions below. Personal files are to be found on Moodle under the
feedback section of Parameters HW2.

¢ Please do not put any comment or strange character or any new line in the
submission file and do NOT rename the provided files.

¢ Do NOT modify the SCIPER, id and seed headers in the [id]-answers.txt file.
¢ Submissions that do not respect the expected format may lose points.

o We also ask you to submit your source code. This file can of course be of any readable
format and we encourage you to comment your code. Notebook files are allowed, but we
prefer if you export your code as normal textual files containing Python/SAGE code. If
an answer is incorrect, we may grant partial marks depending on the implementation.

o Be careful to always cite external code that was used in your implementation if the
latter is not part of the public domain and include the corresponding license if needed.
Submissions that do not meet this guideline may be flagged as plagiarism or cheating.

¢ Some plaintexts may contain random words. Do not be offended by them and search
them online at your own risk. Note that they might be really strange.

¢ Please list the name of the other person you worked with (if any) in the designated
area of the answers file.

o Corrections and revisions may be announced on Moodle in the “News” forum. By
default, everybody is subscribed to it and does receive an email as well. If you decided
to ignore Moodle emails, we recommend that you check the forum regularly.

¢ The homework is due on Moodle on December 15th, 2024 at 23h59.

!Depending on the nature of the exercise, an example of parameters and answers will be provided on Moodle.

http://lasec.epfl.ch/

Exercise 1 Unconventional Symmetric Cryptography

A junior crypto apprentice attempts to come up with several new cryptography schemes. In
this exercise, we will try to break them.

Question 1.1 RSA-OFB

After seeing several modes of operations for block ciphers in class. The crypto apprentice
thinks: ”What if we use RSA instead of a block cipher in these modes of operations. We can
assume that the secret key is composed of both pk and sk of RSA to allow both encryption and
decrption. If we use RSA-2048, we can even support a larger block size compare to 128 bits in
AES!”. Then the apprentice decides to use RSA in OFB mode.

Given an RSA public key (e, N) as Qla_pk, a Python list Qla_y of size n+ 1 with an IV as
the first element followed by n encrypted blocks, report the list of n decrypted blocks under
Qlax. You can verify your solution by using the Qla_xhash value and verify_Qla function
under utils.sage.

Question 1.2 Auction using AES

The crypto apprentice is tasked to create a secure auction mechanism, where the bidders are
supposed to send their bids over an insecure channel without being able to observe other
people’s bids. During this whole process we assume that we have a trusted auctioneer. Here is
the flow of the idea:

e Encrypted Bidding: Each participant will agree on a seperate AES-256 key with the
auctioneer. This way, the auctioneer will be able to decrypt all the bids and decide on
the winner. Each participant encrypts their bid with AES-256 in CBC mode. Figure 1
shows the full details.

Bidder.EncryptBid(k, bid) Auctioneer.DecryptBid(k, c)

1: if bid < 10000 V bid > 99999 1: m < AES256CBC.Decrypt(k, ¢)

2 abort 2: /| Extracts the bytes from index 27 to 31 (inclusive).
3: m < Dear Auctioneer:My bid is $bid 3: bid < m[27: 32]

4: ¢+ AES256CBC.Encrypt(m, k) 4: return bid

5: returnc

Figure 1: Bid Encryption protocol. Example: If a bidder encrypts the bid
12345, the resulting message m is "Dear Auctioneer:My bid is $12345". For conve-
nience, AES256CBC_encrypt(k, m) and AES256CBC_decrypt(k, m) functions are provided
in utils.sage

You realized that you can listen on the network and alter the ciphertexts being sent to the
auctioneer. You also had an insider information about how much one of your main competitors
is going to bid. To guarantee your winning at a cheaper price, you would like to set the
bids of your main competitor to the minimum bid which is $10000. Given your competitor’s
message Qlb_m, a corresponding ciphertext encrypted with AES256CBC as Q1lb_c construct

a ciphertext Qlb_cnew such that the result of Auctioneer.DecryptBid(k, Qlb_cnew) is 10000.
Note that both ciphertexts are Python byte strings with the first 16 bytes corresponds to the
IV for the CBC mode.

Question 1.3 Auction using AES with commitments

After realizing the problem with the previous attempt. The crypto apprentice comes up with
a new scheme, including commitments to bids with the following flow:

1. Commitment Phase: Each party commits to their bids.

2. Encrypted Bidding Phase: Each party encrypts their bids using the same approach
before.

3. Bid Opening Phase: Each party opens their committed bids.

Again, during this whole process we assume that we have a trusted auctioneer. The idea is
that if the commitments are binding, even if we alter the ciphertext in the encrypted bidding
phase, the auctioner will catch that the resulting bid after decryption will be inconsistent with
the opened commitment. Hence, the scheme should be more secure.

The commitment scheme being used is defined in Figure 2. In summary, given an elliptic
curve E(IF,) with a subgroup of prime order ¢ with generators G and H. With the public
parameters (p, q, G, H) we can commit to a message m by sampling a random opening value
r from Z, and compute bid - G +r - H as our commitment. Note that in order to make the
public parameters smaller and save some bandwith, the auctioneer publishes k instead of H
(since the scalar k has smaller representation than a point on the elliptic curve) as part of the
public parameters (since given G and p, H can be inferred from k).

Setup(1*) Commit(pp, bid)
1: G,p,q,a,b< GroupGen(1*) 1: parse pp — (p,q,G, k, a,b)
k«sZ, T +$ Zg
H+k -G H+k -G

W N

return (p,q,G,k,a,b) com<«bid-G+r-H

ot W N

: return com
Verify(pp, com, bid, r)

1: parse pp — (p,q,G,k,a,b)
2: H+ k-G

3: returncom;bidG—&—r-H

Figure 2: Commitment Protocol. GroupGen(1*) generates an elliptic curve over F, (with p of
size A bits) with subgroup of prime order ¢ defined by the equation y? = 2® + azx + b with
generator G.

Given public parameters (p, ¢, G, k, a,b) as Qlc_pp, a commitment Qlc_com and its opening
value Qlc_r for Qlc_bid. Construct a new opening value for Qlc_bidnew such that when the
commitment is computed, it is equal to Qlc_.com. Report this new opening value under

Qlc_rnew. Curve points such as G and Qlc_com are represented as a python tuple of (z,y)
coordinates.

Exercise 2 Q2: An insecure signature scheme based on quadratic residues

In this exercise, we construct an RSA-like signature scheme that is non-trivially insecure. We

define the following signature scheme:

KeyGen: Sign:
1: Sample primes p, ¢ such that p =~ q. 1: Input: sk, m
2: Compute N =p-q 2: Find a,b € Zy such that a® + kb> =m
3: Sample k € Zy (mod N)
4: pk = (k,N) 3: 0 = (a,b)
5. sk = (k,p,q) 4: return o
6: return (sk, pk)
Verify:
1: Input: pk,m,o = (a,b)
2 return a® + kb? = m (mod N)

Figure 3: Our RSA-like signature scheme

Question 2.1 Q2a: Implementing the Signature Scheme

Implement the signature scheme. Specifically, given inputs Q2a_p, Q2a_q, Q2a_N, Q2a_k, Q2am,
compute and return Q2a_a, Q2a_b non zeros that form a valid signature for Q2a_m.

Question 2.2 Q2b: A Reduction Mechanism

We now attempt to break the scheme’s security by forging signatures. From now on, we fix
Q2_N.
Consider the following observations:

Lemma 1. For any ay,as, b1, bs in any ring, the following identity holds:
(a% + kb%) (ag n kbg) = (aras % kbibs)? + k(a1by F azb)?

Lemma 2. If ged(b, N) =1, then:

—k

a>+kb*=m (mod N) <= a? —mb? = (mod N)

where the transformation is defined as a’ = a/b and b’ = 1/b.

Reduction

Let go be a prime such that —k € QR,,. Construct an algorithm that returns a, b such that:
a? + kb* = qot™' (mod N)

where [t| or [N —¢| < 2V/k.

Given a list Q2b_q[j] and Q2b_k[j], compute and return Q2b_a[j], Q2b_b[j], @2b_t[j] all non
zeros and solutions of the equation

Q2b_a[j]* + Q2b_k[j] - Q2b_b[j]* = Q2b_q[j] - Q2b_t[j] ' mod Q2N
for all j.
Hint: Consider the recursive sequence:
q; such that ¢;q;_1 = 3312—1 + k in Z.

T; = min (:Ui,l mod ¢;,q; — (z;—1 mod ql)) in Z.

Question 2.3 Q2c: Fully Efficient Attack

Using the reduction mechanism from Q2, find an efficient algorithm to forge a signature. Given
Q2c_k, Q2c_m, compute Q2c_a, Q2c_b non zeros such that they form a valid signature of Q2c_m.
Hints:

1. Consider finding u,v such that (u? + kv?)m = ¢y mod N for some ¢ as in Q2.

2. Think of the Euclid algorithm structure.

Exercise 3 Linear Key Signing

Let G be a group defined over a prime p with a prime order subgroup of order ¢q. Consdier
the following signature scheme defined over G, note that the hash function H being used is
given as a black-box under utils.sage:

e KeyGen(1?): On security parameter 1*, generate the secret key sk and the public key
pk.

1. Randomly sample x <-s Z, and compute X < ¢g* mod p.
2. Output (sk = z, pk = X).
e Sign(sk,m): Sign a message m into a signature o with the secret key sk.
1. Randomly sample ¢ «—s Z, and compute r < g* mod p.
2. Compute h < H(m||r).
3. Compute s < (sk-h+1t) mod q.
4. Output o = (h, s).

e Verify(pk, m,o): Verify that o is indeed a valid signature of message m.

. Parse (h,s) < o.

. Compute 7 < ¢° - pk™" mod p.
. Compute b’ < H(m/||r").

. Output h L.

= W N =

Question 3.1

Implement the signing procedure for this scheme. You are given public parameters (p, g, g)
as Q3a_pp, a message Q3a_m, a random value to be used in signing Q3a_t and a secret key
Q3a_sk. Report the resulting signature under Q3a_sig.

Note: Make sure that the signature is correct by implementing verification as well.

Question 3.2

Let f be an affine function defined over Z,. It is specified by two values o, 8 € Z; such that
fla)=a-z+p.

Given public parameters Q3b_pp, a valid signature (h,s) as Q3b_sig signed under an
unknown key sk for message Q3b_m and a given public key Q3b_pk. Construct a valid
signature Q3b_signew for the same message that is valid under a new secret key f(sk). Specify
this function under Q3b_f as a python tuple («, 3) such that a, 8 € Zy (i.e. ¢ > a >0 and
qg>p>0).

	Unconventional Symmetric Cryptography
	RSA-OFB
	Auction using AES
	Auction using AES with commitments

	Q2: An insecure signature scheme based on quadratic residues
	Q2a: Implementing the Signature Scheme
	Q2b: A Reduction Mechanism
	Q2c: Fully Efficient Attack

	Linear Key Signing
	
	3.1
	
	3.2

