
Cryptography and Security

http://lasec.epfl.ch/

Homework 2 – Signatures & Symmetric Cryptography
Cryptography and Security 2024

⋄ You are free to use any programming language you want, although Python/SAGE is
recommended.

⋄ Put all your answers and only your answers in the provided [id]-answers.txt file
where [id] is the student ID.1 This means you need to provide us with all Q-values
specified in the questions below. Personal files are to be found on Moodle under the
feedback section of Parameters HW2.

⋄ Please do not put any comment or strange character or any new line in the
submission file and do NOT rename the provided files.

⋄ Do NOT modify the SCIPER, id and seed headers in the [id]-answers.txt file.

⋄ Submissions that do not respect the expected format may lose points.

⋄ We also ask you to submit your source code. This file can of course be of any readable
format and we encourage you to comment your code. Notebook files are allowed, but we
prefer if you export your code as normal textual files containing Python/SAGE code. If
an answer is incorrect, we may grant partial marks depending on the implementation.

⋄ Be careful to always cite external code that was used in your implementation if the
latter is not part of the public domain and include the corresponding license if needed.
Submissions that do not meet this guideline may be flagged as plagiarism or cheating.

⋄ Some plaintexts may contain random words. Do not be offended by them and search
them online at your own risk. Note that they might be really strange.

⋄ Please list the name of the other person you worked with (if any) in the designated
area of the answers file.

⋄ Corrections and revisions may be announced on Moodle in the “News” forum. By
default, everybody is subscribed to it and does receive an email as well. If you decided
to ignore Moodle emails, we recommend that you check the forum regularly.

⋄ The homework is due on Moodle on December 15th, 2024 at 23h59.

1Depending on the nature of the exercise, an example of parameters and answers will be provided on Moodle.

1

http://lasec.epfl.ch/

Exercise 1 Unconventional Symmetric Cryptography

A junior crypto apprentice attempts to come up with several new cryptography schemes. In
this exercise, we will try to break them.

Question 1.1 RSA-OFB

After seeing several modes of operations for block ciphers in class. The crypto apprentice
thinks: ”What if we use RSA instead of a block cipher in these modes of operations. We can
assume that the secret key is composed of both pk and sk of RSA to allow both encryption and
decrption. If we use RSA-2048, we can even support a larger block size compare to 128 bits in
AES!”. Then the apprentice decides to use RSA in OFB mode.

Given an RSA public key (e,N) as Q1a pk, a Python list Q1a y of size n+1 with an IV as
the first element followed by n encrypted blocks, report the list of n decrypted blocks under
Q1a x. You can verify your solution by using the Q1a xhash value and verify Q1a function
under utils.sage.

Question 1.2 Auction using AES

The crypto apprentice is tasked to create a secure auction mechanism, where the bidders are
supposed to send their bids over an insecure channel without being able to observe other
people’s bids. During this whole process we assume that we have a trusted auctioneer. Here is
the flow of the idea:

• Encrypted Bidding: Each participant will agree on a seperate AES-256 key with the
auctioneer. This way, the auctioneer will be able to decrypt all the bids and decide on
the winner. Each participant encrypts their bid with AES-256 in CBC mode. Figure 1
shows the full details.

Bidder.EncryptBid(k, bid)

1 : if bid < 10000 ∨ bid > 99999

2 : abort

3 : m← Dear Auctioneer:My bid is $bid

4 : c← AES256CBC.Encrypt(m, k)

5 : return c

Auctioneer.DecryptBid(k, c)

1 : m← AES256CBC.Decrypt(k, c)

2 : // Extracts the bytes from index 27 to 31 (inclusive).

3 : bid← m[27 : 32]

4 : return bid

Figure 1: Bid Encryption protocol. Example: If a bidder encrypts the bid
12345, the resulting message m is "Dear Auctioneer:My bid is $12345". For conve-
nience, AES256CBC encrypt(k, m) and AES256CBC decrypt(k, m) functions are provided
in utils.sage

You realized that you can listen on the network and alter the ciphertexts being sent to the
auctioneer. You also had an insider information about how much one of your main competitors
is going to bid. To guarantee your winning at a cheaper price, you would like to set the
bids of your main competitor to the minimum bid which is $10000. Given your competitor’s
message Q1b m, a corresponding ciphertext encrypted with AES256CBC as Q1b c construct

2

a ciphertext Q1b cnew such that the result of Auctioneer.DecryptBid(k,Q1b cnew) is 10000.
Note that both ciphertexts are Python byte strings with the first 16 bytes corresponds to the
IV for the CBC mode.

Question 1.3 Auction using AES with commitments

After realizing the problem with the previous attempt. The crypto apprentice comes up with
a new scheme, including commitments to bids with the following flow:

1. Commitment Phase: Each party commits to their bids.

2. Encrypted Bidding Phase: Each party encrypts their bids using the same approach
before.

3. Bid Opening Phase: Each party opens their committed bids.

Again, during this whole process we assume that we have a trusted auctioneer. The idea is
that if the commitments are binding, even if we alter the ciphertext in the encrypted bidding
phase, the auctioner will catch that the resulting bid after decryption will be inconsistent with
the opened commitment. Hence, the scheme should be more secure.

The commitment scheme being used is defined in Figure 2. In summary, given an elliptic
curve E(Fp) with a subgroup of prime order q with generators G and H. With the public
parameters (p, q,G,H) we can commit to a message m by sampling a random opening value
r from Zq and compute bid ·G+ r ·H as our commitment. Note that in order to make the
public parameters smaller and save some bandwith, the auctioneer publishes k instead of H
(since the scalar k has smaller representation than a point on the elliptic curve) as part of the
public parameters (since given G and p, H can be inferred from k).

Setup(1λ)

1 : G, p, q, a, b← GroupGen(1λ)

2 : k ←$ Zq

3 : H ← k ·G
4 : return (p, q,G, k, a, b)

Commit(pp, bid)

1 : parse pp→ (p, q,G, k, a, b)

2 : r ←$ Zq

3 : H ← k ·G
4 : com← bid ·G+ r ·H
5 : return com

Verify(pp, com, bid, r)

1 : parse pp→ (p, q,G, k, a, b)

2 : H ← k ·G

3 : return com
?
= bid ·G+ r ·H

Figure 2: Commitment Protocol. GroupGen(1λ) generates an elliptic curve over Fp (with p of
size λ bits) with subgroup of prime order q defined by the equation y2 = x3 + ax + b with
generator G.

Given public parameters (p, q,G, k, a, b) as Q1c pp, a commitment Q1c com and its opening
value Q1c r for Q1c bid. Construct a new opening value for Q1c bidnew such that when the
commitment is computed, it is equal to Q1c com. Report this new opening value under

3

Q1c rnew. Curve points such as G and Q1c com are represented as a python tuple of (x, y)
coordinates.

4

Exercise 2 Q2: An insecure signature scheme based on quadratic residues

In this exercise, we construct an RSA-like signature scheme that is non-trivially insecure. We
define the following signature scheme:

KeyGen:

1: Sample primes p, q such that p ≈ q.
2: Compute N = p · q
3: Sample k ∈ ZN

4: pk = (k,N)
5: sk = (k, p, q)
6: return (sk, pk)

Sign:

1: Input: sk,m
2: Find a, b ∈ ZN such that a2 + kb2 ≡ m

(mod N)
3: σ = (a, b)
4: return σ

Verify:

1: Input: pk,m, σ = (a, b)

2: return a2 + kb2
?≡ m (mod N)

Figure 3: Our RSA-like signature scheme

Question 2.1 Q2a: Implementing the Signature Scheme

Implement the signature scheme. Specifically, given inputs Q2a p, Q2a q, Q2a N, Q2a k, Q2a m,
compute and return Q2a a, Q2a b non zeros that form a valid signature for Q2a m.

Question 2.2 Q2b: A Reduction Mechanism

We now attempt to break the scheme’s security by forging signatures. From now on, we fix
Q2 N.

Consider the following observations:

Lemma 1. For any a1, a2, b1, b2 in any ring, the following identity holds:(
a21 + kb21

)(
a22 + kb22

)
= (a1a2 ± kb1b2)

2 + k(a1b2 ∓ a2b1)
2

Lemma 2. If gcd(b,N) = 1, then:

a2 + kb2 ≡ m (mod N) ⇐⇒ a′2 −mb′2 ≡ −k (mod N)

where the transformation is defined as a′ = a/b and b′ = 1/b.

Reduction

Let q0 be a prime such that −k ∈ QRq0 . Construct an algorithm that returns a, b such that:

a2 + kb2 ≡ q0t
−1 (mod N)

where |t| or |N − t| < 3
2

√
k.

5

Given a list Q2b q[j] and Q2b k[j], compute and return Q2b a[j], Q2b b[j], Q2b t[j] all non
zeros and solutions of the equation

Q2b a[j]2 + Q2b k[j] · Q2b b[j]2 = Q2b q[j] · Q2b t[j]−1 mod Q2 N

for all j.

Hint : Consider the recursive sequence:

qi such that qiqi−1 = x2i−1 + k in Z.

xi = min
(
xi−1 mod qi, qi − (xi−1 mod qi)

)
in Z.

Question 2.3 Q2c: Fully Efficient Attack

Using the reduction mechanism from Q2, find an efficient algorithm to forge a signature. Given
Q2c k, Q2c m, compute Q2c a, Q2c b non zeros such that they form a valid signature of Q2c m.

Hints:

1. Consider finding u, v such that (u2 + kv2)m = q0 mod N for some q0 as in Q2.

2. Think of the Euclid algorithm structure.

6

Exercise 3 Linear Key Signing

Let G be a group defined over a prime p with a prime order subgroup of order q. Consdier
the following signature scheme defined over G, note that the hash function H being used is
given as a black-box under utils.sage:

• KeyGen(1λ): On security parameter 1λ, generate the secret key sk and the public key
pk.

1. Randomly sample x←$ Zq and compute X ← gx mod p.

2. Output (sk = x, pk = X).

• Sign(sk,m): Sign a message m into a signature σ with the secret key sk.

1. Randomly sample t←$ Zq and compute r ← gt mod p.

2. Compute h← H(m∥r).
3. Compute s← (sk · h+ t) mod q.

4. Output σ = (h, s).

• Verify(pk,m, σ): Verify that σ is indeed a valid signature of message m.

1. Parse (h, s)← σ.

2. Compute r′ ← gs · pk−h mod p.

3. Compute h′ ← H(m∥r′).

4. Output h
?
= h′.

Question 3.1

Implement the signing procedure for this scheme. You are given public parameters (p, q, g)
as Q3a pp, a message Q3a m, a random value to be used in signing Q3a t and a secret key
Q3a sk. Report the resulting signature under Q3a sig.
Note: Make sure that the signature is correct by implementing verification as well.

Question 3.2

Let f be an affine function defined over Zq. It is specified by two values α, β ∈ Zq such that
f(x) = α · x+ β.

Given public parameters Q3b pp, a valid signature (h, s) as Q3b sig signed under an
unknown key sk for message Q3b m and a given public key Q3b pk. Construct a valid
signature Q3b signew for the same message that is valid under a new secret key f(sk). Specify
this function under Q3b f as a python tuple (α, β) such that α, β ∈ Z∗

q (i.e. q > α > 0 and
q > β > 0).

7

	Unconventional Symmetric Cryptography
	RSA-OFB
	Auction using AES
	Auction using AES with commitments

	Q2: An insecure signature scheme based on quadratic residues
	Q2a: Implementing the Signature Scheme
	Q2b: A Reduction Mechanism
	Q2c: Fully Efficient Attack

	Linear Key Signing
	
	3.1
	
	3.2

